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When imaging is performed by using a coherent signal, the result is frequently a realization of the stochastic process
known as speckle. The information sought from this process is often the mean value of its envelope or intensity at
each point in the image plane. When only a single realization of the process is available, ergodicity is required
within a sufficiently large region for accurate estimation of the mean. The identification of these regions is the
segmentation problem that is addressed. The approach presented clips the speckle image at a constant threshold
level and analyzes the resulting bilevel image based on the level-crossing statistics of the speckle process. An
analysis of the level-crossing process leads to a decision rule for identifying or segmenting distinct regions of the
image based on the sizes of the fades and the excursions in the clipped speckle. The measurement of these sizes is
accomplished by using the morphological transformations of opening and closing. This new approach has been
applied to computer-generated speckle images and may prove useful in laser, ultrasound, and radar imaging, in
which speckle phenomena are manifest.

1. INTRODUCTION

Implicit in our discussion is a model for image formation
that produces a stochastic process referred to in the litera-
ture as fully developed speckle. The first- and second-order
statistical properties of speckle are well known' and are
closely related to those encountered in the study of Gaussian
noise processes in statistical communications.2 There has
been recent interest in the statistical properties of clipped
speckle, arising from the reduced computational complexity
of working with 1-bit/pixel images.3 4 To date, the study of
clipped speckle has focused on the first- and second-order
statistical properties generated by clipping the trajectories
I(x) of a speckle process. Throughout this paper when we
refer to clipping, we mean hard clipping at a constant thresh-
old level u, defined as

U(X) o I I(X) (1)

The results that are presented here differ from previous
results related to the study of clipped speckle in that our
results are based on the level crossings of the envelope of a
Gaussian noise processes.5 6 Furthermore, the inferences
being made from the data differ in that we are not attempt-
ing to estimate parameters of the unclipped speckle process
but are instead segmenting an image based on the distribu-
tions of the random variables related to the level crossings,
given hypothesized distributions.

Our interest in speckle derives from research in biomedi-
cal imaging with ultrasound, for which it is necessary to
select homogeneous regions of interest for the estimation of
quantitative parameters such as the attenuation or back-
scattering coefficients of the tissues being imaged. 7 Since
ultrasound B scans of tissues such as liver are multiplicative-
ly contaminated with speckle noise, our goal is to segment an
image containing several regions differing only in their mean
intensities on the basis of that mean.8 ' 9 Once the images are

segmented, the desired quantitative parameters may then
be estimated in the regions identified as statistically homo-
geneous.

The rationale behind our approach can best be demon-
strated by using the image of Fig. 1(a), which contains two
Rayleigh distributed regions. The Rayleigh distribution

pv(V) = exp(- 2~;)v / U
v > 

(2)

otherwise

arises when the envelope of a complex Gaussian process is
considered, and its mean is given in terms of the parameter ,
as ju = (r/2)'I 2

,pl/
2 . Denote the interior, bright circular re-

gion in the image as R and the exterior region as Re, having
parameters iki and itke, respectivly. The desired result is the
assignment of each point in the image to the appropriate
region. If each pixel were independent, an appropriate rule
for assigning membership to the regions might be a maxi-
mum-likelihood decision rule.'0 The application of this rule
to the decision between two Rayleigh distributions of known
parameters si and ¢/e results in clipping the image at the
threshold level

dn (m)1/2

u § 1 1 (3)

where the notation reflects that the decision di, in which the
point is assigned to the region R, occurs when v is greater
than the right-hand side of the equation and that the deci-
sion d in which the point is assigned in the region Re, occurs
when v is less." The application of this rule to the image of
Fig. 1(a) yields Fig. 1(b).

The pixels, however, are not independent. Consider the
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(a) (b)

(c) (d)

Fig. 1. Example of the segmentation process. (a) Synthetically
generated speckle pattern for which the mean of the exterior is 1.0
and the mean of the interior is 3.0. (b) Result of clipping (a) at the
maximum-likelihood decision point. (c) Closing of (b) with a circu-
lar structuring element of 15 pixels in diameter. (d) Opening of (c)
by a circular structuring element of 15 pixels in diameter.

results of the decision rule that may be enumerated as fol-
lows:

Case 1:
Case 2:
Case 3:
Case 4:

v e Re, de.
v E Re, di (false positive).
v E Ri, di.
v E Ri, de (false negative).

With no loss of generality, assume that J/e < qi Then the
cases 1 and 3 correspond to a correct decision. Case 4 corre-
sponds to the case for which the envelope faded below the
decision level u while in the brighter region Ri. Case 2, on
the other hand, corresponds to an excursion of the envelope
above the decision level u while in the darker region Re. The
lengths of the fades and excursions are random variables,
with well-defined distributions. Therefore we may classify
the fades and excursions based on these distributions.

Consider first the case of the fades below the threshold
level u. The distribution of the sizes of the fades is depen-
dent on whether the fade is from region Ri or Re. Using
these distributions, we may identify a decision point for
classifying the fades based on their sizes. This size thresh-
old can then be implemented by performing the morphologi-
cal transformation known as a closing on the clipped image
of Fig. 1(b). The results of this transformation can be seen
in Fig. 1(c). Likewise, each excursion may be classified by
using a decision rule based on the size of the excursion as
being either from Re or Ri. The implementation of the size
thresholding of the excursions may be performed by the
morphological transformation known as an opening. The
result of this step is shown in Fig. 1(d). The result is seen to
be a suitable segmentation of the image. The details relat-
ing to the choice of the maximum-likelihood level for the
clipping threshold, the distributions of fade and excursion
lengths, the use of the morphological filtering operations of
opening and closing for implementing the decision rule on
images, and the application of the technique to more com-

plex images having multiple regions and unknown parame-
ters will be addressed in Sections 2-4 of this paper.

2. LEVEL-CROSSING STATISTICS

The random variables related to the events referred to as
level crossings are of principal interest to us. These events
may be defined as follows.11

Let 4(t) be a continuous real-valued function on the closed
interval [a, b], and let u be a real value such that 4(t) is not
identically equal to u in any open interval. Further assume
that 4(a) and (b) are not equal to u.

The function 4(t) is said to have a crossing of the level u at
to if the image of every neighborhood of to contains values
both greater than and less than u. Denote the number of
crossings in the unit interval as Cu.

The function 4(t) is said to have an upcrossing of the level
u at the point to if there exists an e > 0 such that 4(t) • u in
(to - e, to) and 4(t) ' u in (to, to + e). We shall denote the
number of upcrossings in the unit interval as Uu.

The function 4(t) is said to have a downcrossing of the
level u at the point to if there exists an e > 0 such that 4(t) 2 u
in (to - e, to) and 4(t) < u in (to, to + e). We shall denote the
number of downcrossings in the unit interval as Du.

The function 4(t) is said to have a tangency to the level u at
the point to if 4(to) = u and is not a crossing of the level u.

In general the tangencies may be ignored since they are
events of zero probability. The random variables of interest
are the distances between crossings of the level u. An excur-
sion of the envelope below the level u (fade) is the distance
from a downcrossing of u to the next upcrossing. Similarly,
an excursion of the envelope above the level u (distance
between fades) is the distance from an upcrossing of the level
u to the next downcrossing. Since the crossings form a
stationary stream of events, it follows that the events are
independent random variables.

The mean density of the crossings of the level u by a
stationary process 4(t), denoted by (Cu), can be expressed in
terms of the first-order density of the process fz(u) and the
conditional mean of the process derivative 4'(t) as12

(Co) = f(u)(l'(t)4l(t) = ul), (4)

where (-) denotes the expected value of the random vari-
ables that it encloses. Since the tangencies are, in general,
events of zero probability, it follows that

(CU)
___ = (Du) = (Uu).

2

The mean length of an excursion is given by'

(xtlu) = 'lp[(0) - VO(c) > u]},

(5)

(6)

where vk(t) = P[4(0) > u, C(0, t) = k] and C(0, t) = k denotes
the number of crossing in the interval [0, t]. When (t) is
ergodic, we have vo(e) = 0. The expected value of the
crossing rate (= (Uu)) is given by ,. An analogous result
holds for the mean length of a fade below the threshold level
U:

(x1lu) = -fP[4(o) - WO(c) < u]J, (7)

where Wk(t) = P[4(0) < u, C(O, t) = k].
Many of the results related to level-crossing events involve
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the spectral properties of the function being clipped. Let
(t) be a stationary process having spectral representation

(t)= exp(jtX)d(X). (8)

Then the spectral moments are defined as

n= J X'dF(X), (9)

where (jd(r) 2 = dP(X)I). In the case when the power spec-
trum F(X) is absolutely continuous with power spectral den-
sity f(X) = F'(G) the Fourier relationship with the autocorre-
lation results:

r(t) = J f(X)exp(jtX)dX. (10)

Thus (0) = 21, and we define A = 2- X1
2, a scale factor

related to the bandwidth of the system. In the case of
ultrasound the relation between speckle size and system
parameters is given by Wagner et al.13

Assume that t(t) is a stationary Gaussian process and that
X2 is finite. The analytic envelope V(t) of t(t) has by defini-
tion a one-sided power spectrum and a Rayleigh distribu-
tion. In the case for which V(t) is an ergodic process, which
is the envelope of a zero-mean unit-variance Gaussian sta-
tionary process, the expected number of crossings of the
level u by the envelope is given by

(2A)1/2 (U2).(C.) = ( u~/2
i exp(- -)

This results in a mean length for a fade below u of

(X~IU) = (27r)l/ 2 exp(u 2/2) - 1

and a mean length of an excursion above u of

(Xtlu) = (2r) 1/2 1

(11)

lengths. While the distributions of fades and excursions are
in general quite complex, simple results are easily obtained
for the limiting cases when u - 0 and u - -. 11,14

Consider first the case of fades as u - and the case of
excursions when u - 0. In both of these cases the stationary
stream of events asymptotically satisfies the independent
increment assumption of a Poisson process. Since the re-
maining conditions that characterize a Poisson process are
satisfied for every stationary stream, it follows that the re-
sults for Poisson processes may be directly applied. There-
fore the density distribution of the length of the fades ap-
proaches the Erlang distribution

it (, u ) = exp(-r), (15)

where r is the length of the fade normalized by the expected
length of a fade. Similarly, the length of an excursion above
a low level also has an Erlang distribution

ft(t, u 0 0) = exp(-A). (16)

Here, however, r is the length of the excursion normalized by
the expected length of an excursion.

The remaining two limiting cases are more complex.
Consider first the distribution of fades below the level u as u
- 0. Once again, it is advantageous to normalize the length
of the fade by the expected length of the fade. The resulting
distribution is given by

t, u 0 0) = 2rz2exp(-z)[I(z) -( + Iz ) I(z)],

(17)

where z = 2/(7rr2) and Io(z) and I(z) are, respectively, the
zero- and first-order modified Bessel functions. The case

(12)

(13)

When Xo = r(0) 1 the above result may be modified by
making the following replacements: P

u
(So)1'

X2- - X12
A 0 o>,2

(14)

The expected values of fades and excursions above the
threshold level u are displayed in Fig. 2. The following
properties of this graph should be noted:

(1) The expected length of the fades is a monotonically
increasing function of the clipping level and, for a fixed
threshold value, varies inversely as the mean of the process.

(2) The expected length of the excursions is a monotoni-
cally decreasing function of the clipping level and, for a fixed
threshold value, varies directly as the mean of the process.

The expected values of fades and excursions will be used
for normalizing the distance scales in the probability-densi-
ty functions for the distributions of fades and excursion

10 -

0 05 1 1.5 2 2.5 3
Nonna]1zeic 04W1ng Ibhbold

Fig. 2. Mean lengths of fades (dashed curve), the mean length of
excursions (solid curve), and the mean distance between fades (ex-
cursions) for the envelope of a speckle process.
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Fig. 3. Log-likelihood ratio of an excursion of normalized length x1
using the large ratio of means approximation for ratios of 5.0 (solid
curve), 10.0 (short-dashed curve), 100.0 (long dashed curve), 1000.0
(dotted-dashed curve).

for the normalized length of an excursion as u - is given
by the Rayleigh distribution

(18)(, u- ) = 2 exp(- Z p2).

These distributions are plotted in Fig. 3.

3. SEGMENTATION

likelihood decision point, then we have the right-hand side
of the MAP decision rule going to unity.

Consider the limiting case for which the clipping thresh-
old u is such that (Al) 1/

2 << u << 21/2. In the limit for the case
U2 = u/b2

1 /2 - 0 the density for the excursions, obtained
from Eq. (16), is given by

1
lim ft(x) = _ exp -X/2),
U2 go X2

(20)

where x2 = (x Iu 2 ), while in the case when ul = u/,6ll/2 - .

the limiting density is obtained from Eq. (18) and is given by

lim f(x) = - - exp[ 4 (x -UJ__ 2 2 L \x lJ
(21)

where xi = (x t1ul). The likelihood function for the excur-
sions in the limiting case of widely separated means is

A>(x) = [ exp(- X)] /{2x12 ex[ (x ) ] (22)

We can form the log-likelihood ratio in terms of xi = x/xl
and r = (O2/,)1/2, getting

l"(x) = 4 x 2 - -ln(xl) - ln- r,4 r (2 (23)

where we have made use of Eq. (13) to eliminate terms in x2.
The log-likelihood ratio for several values of r is displayed in
Fig. 3.

The maximum-likelihood test assumes that the ratios of
excursions in the two regions are equally likely, thus result-
ing in the decision rule

l"(x) 0. (24)

In fact the ratio is strongly dependent on the clipping
threshold. For this reason, a MAP decision criterion, i.e.,

P(zlml) d2 P(m 2 )

P(zIm2 ) d P(mY)
(25)

The lengths of the fades and excursions are random vari-
ables that are independent. 6 We shall consider the classifi-
cation of fades and excursions as a decision problem. In this
case each pixel within a fade or excursion will be classified
based on the decision about whether the fade or excursion is
from R, or R 2 . In the example of Section 2 we chose the
maximum-likelihood decision point, which has implicitly
assumed that we have no a priori knowledge with regard to
the sizes of the two regions. If we want to retain this as-
sumption when the decision rule is based on the sizes of the
fades and excursions in the clipped image, we are forced to
use a maximum a posteriori (MAP) decision rule; i.e.,

p(zIm 1 ) d2 p(m 2 ) (19)

p(zlm 2) d1 p(mi)

where ml and m2 are the events that the random variable z is
contained in the regimes R, and R2, respectively. The mes-
sage probabilities on the right-hand side of the equation
reflect the ratios of crossing densities for the two assumed
distributions. This is simply the ratio of two Rayleigh dis-
tributions. If we choose to clip the image at the maximum-

is a reasonable one. The ratio of the message probabilities
of the right-hand side is just the ratio of the crossing rates of
the level u given in Eq. (11). The MAP criterion is thus

d2

Au(x) !5 A(u), (26)
d,

where the right-hand side is simply the likelihood ratio of
two Rayleigh distributions. Thus the clipping level, which
reduces the MAP criterion to a maximum-likelihood criteri-
on, is seen to be the maximum-likelihood decision point for
two Rayleigh distributions [Eq. (3)].

In an analogous manner to the excursions, we can derive a
decision rule for classifying the fades of the envelope of a
speckle process below a fixed threshold in the limiting case.
The limiting form of the probability-density function of the
length of fades below a low level, obtained from Eq. (17), is
given by

1lim f;(X) = p 2Z 2 e ( 1 +

(27)
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Fig. 4. Log-likelihood ratio for a fade of normalized length x2 using the large ratios of means approximation for ratios 5.0 (solid curve), 10.0
(short-dashed curve), 100.0 (long dashed curve), 1000.0 (dotted-dashed curve).

where z = 2x2
2/7rx2 and x2 = (x 1Iu 2 )- Similarly, the limiting

form of the probability-density function of the length of
fades below a large level, obtained from Eq. (15), is

lim f(x) = 4 exp (- -x (28)
ul-. X 1 X 1

where x = (x flul). For the case for which the clipping
threshold is set to the maximum-likelihood decision point,
the log-likelihood ratio is plotted in Fig. 4 for several values
of r = (i2/1)/ 2 as a function of x2 = x/x2. A close approxi-
mation to the maximum-likelihood decision point may be
obtained by noting that

\1/2 U2 3
lim x=()2 + (U2 ) (29)

and that the term in brackets in Eq. (17) asymptotically
approaches 3/4 for small values of z. Therefore

1 6 X2
4 2' 2

2 \lim f(X) = - - exp - 2)-
U2 -o X2 r 7rx3

The likelihood function for the fades in the limiting case of
widely separated means 2 << x is given by

A~(x) = [4 . x( X2]/4 ex ( -).
[ X2 7r X 4 ( X T2) /X, X1)

(31)

As in the previous case for the excursions, we can express the
log-likelihood ratio as a function of x2 = X/iZ

l (x) = n /- 4 n(x 2) - 2 + (32)

Since the clipping is at the maximum-likelihood decision
point, we have

X1 = (d)1{e xp[21 _(r) 1} /[2 2(r)1/2 (33)

When we are dealing with the nonlimiting case, closed-
form solutions for the distribution functions are not known;
however, numerical solutions are possible.514 These solu-
tions show that the shape of the normalized distribution
undergoes a gradual transition between the limiting cases.
It is therefore the normalization factor that predominates in
the case of the nonnormalized distributions on which the
decisions are based.

4. SIZE MEASUREMENT

Mathematical morphology provides a framework in which a
collection of geometric filtering techniques has been formal-
ized.'5 The results were initially used in stochastic geome-
try for the measurement of the size of random sets. Our
principal interests are not far removed from this initial use.
The problem that we face is the measurement of the sizes of
random sets created by clipping speckle images. In this
section we shall present a brief introduction to the terminol-
ogy and mathematical formalism and shall show how these
techniques may be applied to the image segmentation prob-
lem.

An image may be represented as a function mapping an m-
dimensional Euclidean space into the real line. In the case
of clipped images, the domain space is two dimensional, and
the range is restricted to the set 0, 1. Such a function will
be referred to as a binary image. In the following defini-
tions, the sets AY and !B are subsets of Euclidean vector
space. The translation of the set A by the vector x e is
denoted as

Ax = A+x={y+xly A.
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The scalar multiplication of A by the scalar c is denoted as

cA = c xIx e A. (35)

The reflection of .A is the special case

A = - = -xIx e A}. (36)

Clearly if A is symmetric, then A1 = at.
The Minkowski sum of A and !B is defined as

A (D ={x+ylxe A,y M. (37)

It is easily shown that

A Al = U Ay = U Bx (38)
ye xG.A

The dilation of A by B is defined as the Minkowski sum A
e M. The effect of a Minkowski sum or a dilation of a set A
by a compact set S is to extend the boundaries of A, filling
in cavities. The set theoretic dual to the Minkowski addi-
tion, the Minkowski difference, is defined as

A e = l Ay, (39)
yeS

and the erosion of A by B is defined as the Minkowski
difference A e 3. The effect of a Minkowski subtraction or
erosion is to shrink the boundaries of A, producing smaller
fragments or eliminating them altogether.

An opening of a set A by a set B is defined as

.Ad = (A E) _t) ED B (40)

or, from Eqs. (39) and (38), as

-As== u n ~-A.Y (41)

which is the union of all the translates of B that are con-
tained in A. While the closing of A by - is the set theoretic
dual defined as

'A = (.A D ) E)e (42)

or, once again from Eqs. (39) and (38), as

JA3 = n U Ax, (43)
xEB yeB

which is the union of all the translates of !B that are con-
tained in the complement of A, i.e., the opening of the
complement of A.

In morphological filtering the set A usually denotes the
set formed from the image, and the set S, usually much
smaller than A, is referred to as a structuring element.

In our context, that of the segmentation of speckle, the
structuring element will be chosen to have the basic shape
and size of the postulated speckle distributions. Thus the
level-crossing analysis can be quickly implemented by using
the morphological closing and opening operations.

5. RESULTS

The results of Sections 2-4 may be applied to the simple case
for which we have an image composed of two speckle regions
having known parameters. For this purpose, software was

written to generate synthetic speckle images with known
parameters and contents. These images were constructed
by generating independent, zero-mean, white, unit-variance,
complex circular Gaussian variates that multiply some
mean-value pixels in a given image. The resulting image,
which models random scatterers of varying amplitude, is
then convolved with a two-dimensional function whose pa-
rameters were chosen to match the parameters of an acoustic
pulse generated by a typical clinical B-scan instrument.
These parameters result in a Gaussian envelope in the range
direction having a standard deviation of 7.2 pixels. The
envelope in the transverse direction is of the form

rjl(X,21
(44)

where Ji(x) is a first-order Bessel function and x has been
scaled so that the first zero occurs at 6.7 pixels. The result-
ing waveforms are envelopes detected to produce the desired
speckle images.

The structuring element was constructed from the basic
two-dimensional pulse shape, with the scale factor of (2r/
A)'/ 2 in Eqs. (12) and (13) taken as 7.2 pixels in the range
direction and 2.9 in transverse direction. A boundary of two
times the basic structuring element was eliminated before
the statistics in each region were computed.

The results presented are for a two-region segmentation
both with and without a priori knowledge of the means of
the regions. The results appearing in Figs. 5-7 and Tables
1-3 (operations using a priori known means) show that a
significant improvement in the segmentation of speckle im-
ages can be obtained with the use of clipping and morpholog-
ical filtering, as opposed to the use of clipping alone. The
improvement is most evident in the cases for which the ratio
of the means is in excess of 3 or less than 1/3. In these cases
nearly all the fades and excursions that contribute to the
errors in the region segmentation are identified and re-
moved. The tabulated results show the number of pixels
placed into each region, the arithmetic mean in each region,
and the mean divided by the standard deviation in each
region. The size of the circular region is 128 pixels in diame-
ter. If the transition between the regions is assumed to
occur at the point where the expected value is halfway be-
tween the means of the two regions, the number of pixels
interior to the circle is 12,868, and 52,668 pixels are exterior
to it. In the estimates pixels on the boundary were removed
by dilating each of the identified regions by using a structur-
ing element 2 standard deviations in size and forming the
intersection of the two resulting sets. In the ideal case this
reduces the number of pixels in the interior region to
-10,923 pixels and the exterior region to -50,591 pixels.
The method of boundary identification used here tends to
overestimate the size of the boundary, so in general the
observed sizes of the two regions will be smaller than in the
ideal case.

While the arithmetic estimate of the mean intensity is
unbiased, the estimators for the variance of the intensity are
only asymptotically unbiased. Hence, in the case for which
the number of speckle spots contained in a region is small,
the estimate of the ratio of the mean to the standard devi-
ation will be high.'6 In the results appearing in Figs. 5-7 and
Tables 1-3 the segmented regions are sufficiently large to
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(a) (b) (c) (d)
Fig. 5. Segmentation of a 256 X 256-pixel synthetic speckle image
with a circle of 128 pixels in diameter. The top row is the image
displayed with a logarithmic palette. The center row is the result of
thresholding at the maximum-likelihood decision point. The bot-
tom row displays the result of the segmentation algorithm with
known means. The columns from left to right have means of (a) 10-
100, (b) 20-100, (c) 30-100, (d) 40-100.

(a) (b) (c) (d)

Fig.6. Same as Fig.5 for known means with ratios of (a) 50:100, (b)
150:100, (c) 200:100, (d) 250:100.

(a) (b) (c) (d)

Fig. 7. Same as Fig. 5 for known means with ratios of (a) 300:100,
(b) 350:100, (c) 500:100, (d) 1000:100.

result in a negligibly biased ratio of the mean to the standard
deviation. For similar regions Wear and popp16 and Tuthill
et al. 9 obtained values of 1.91 t 0.1, which is in agreement
with the values that were obtained in our results.

For comparative purposes, the images in Figs. 5-7 were
generated by using an identical seed value for the random-
number generator. This resulted in a speckle pattern hav-
ing an average value of 106.1 instead of the theoretically
expected mean of 100. In Figs. 5-7 we see the effect of
clipping the images at the maximum-likelihood decision
point, as determined from the parameters supplied to simu-
lation software. Also shown is the result of the opening and
the closing operations together with the boundary elimina-
tion.

Figure 8 and Table 4 display the ability of the algorithm to
identify regions as a function of size. For comparative pur-
poses the same initial seeds were used in each figure; howev-

Table 1. Statistics Resulting from the Segmentation
of the Images in Fig. 5a

Figure Threshold N Mean Mean/SD

5(a) 24 6473 11.4 1.92
48663 105.5 1.87

5(b) 41 6897 23.1 1.99
45545 106.4 1.89

5(c) 55 6759 34.7 1.98
45794 106.1 1.89

5(d) 67 5072 45.6 1.90
42022 105.3 1.88

SD, standard deviation.

Table 2. Statistics Resulting from the Segmentation
of the Images in Fig. 6a

Figure Threshold N Mean Mean/SD

6(a) 77 1776 51.1 1.99
43890 104.3 1.87

6(b) 136 16360 151.7 1.87
13556 85.3 1.80

6(c) 153 11164 221.3 1.96
37776 100.9 1.84

6(d) 167 10519 282.8 1.99
43680 102.3 1.85

a SD, standard deviation.

Table 3. Statistics Resulting from the Segmentation
of the Images in Fig. 7a

Figure Threshold N Mean Mean/SD

7(a) 177 10416 340.9 2.00
44338 102.3 1.86

7(b) 186 9900 404.8 2.03
46438 103.7 1.85

7(c) 207 9804 583.7 2.06
46670 104.1 1.85

7(d) 243 10381 1162.1 2.07
42022 104.1 1.85

a SD, standard deviation.
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er, the seeds were changed between columns. In the case for
which the means of the two regions are known, the algorithm
is insensitive to the number of fades and excursions that
make up a region. In the case for which the means are

(a) (b) (C) (d)

Fig. 8. Circles of mean 300 in a background of 100 with diameters
of (a) 32 pixels, (b) 64 pixels, (c) 182 pixels, (d) 256 pixels. The
threshold was set to the maximum likelihood by using the known
parameters.

Table 4. Statistics Resulting from the
of the Images in Fig. 8a

Segmentation

Figure Threshold N Mean Mean/SD

8(a) 177 371 275.0 1.79
59367 106.3 1.89

8(b) 177 2238 313.5 1.87
57202 102.1 1.94

8(c) 177 21424 315.9 1.77
30786 99.6 1.97

8(d) 177 43607 305.2 1.87
7343 108.2 2.07

a SD, standard deviation.

(a) (b) (c) (d)

Fig. 9. Same as Fig. 5 for unknown means with ratios of (a) 50:100,
(b) 150:100, (c) 200:100, (d) 250:100.

(a) (b) (c) (d)

Fig. 10. Same as Fig. 5 for unknown means with ratios of (a)
300:100, (b) 350:100, (c) 500:100, (d) 1000:100.

unknown, however, the size of the region influences the
ability to estimate the means of the two regions correctly,
and the results of the segmentation degrade accordingly.

Figures 9 and 10 show the same cases analyzed in Figs. 6
and 7 except that the algorithm is no longer supplied with a
priori known means. In these cases conventional statistical
tests are employed first to test the postulate that the image
is derived from a single mean Rayleigh process (or exponen-
tial probability density distribution) if intensities are ana-
lyzed.8 If this postulate is rejected, then an estimate of the
maximum-likelihood decision point is obtained, and the pro-
cess continues with thresholding and morphological filter-
ing.8 The results in Figs. 9 and 10 are similar to those for the
previous cases in which known means were entered. This
shows that the overall approach is robust and can be applied
to segmentation of speckle images in the practical situation
for which mean values are not known a priori.

6. CONCLUSIONS

We have shown how fully developed speckle images may be
segmented based on the statistical properties of their level
crossings. This method shows promise for the identification
of homogeneous regions in speckle contaminated images.
The monotonicity of the expected values of fades and excur-
sions allows us to split an image recursively when several
regions are present. Further, the parameters themselves
may be estimated from these procedures.
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